Can insoluble Galois extensions have Hopf-Galois structures of soluble type?

Nigel Byott

University of Exeter

Omaha, May 2019

Can insoluble Galois extensions have Hopf-Galois structures of soluble type?

Nigel Byott

University of Exeter

Omaha, May 2019

A question I still can't answer!

Are there any regular embeddings θ : $G \rightarrow Hol(N)$?

Are there any regular embeddings $\theta : G \to Hol(N)$?

Equivalently

Are there any regular embeddings θ : $G \rightarrow Hol(N)$?

Equivalently

• Does a Galois extension with group *G* admit a Hopf-Galois structure of type *N*?

Are there any regular embeddings θ : $G \rightarrow Hol(N)$?

Equivalently

- Does a Galois extension with group *G* admit a Hopf-Galois structure of type *N*?
- Does there exist a left skew brace with multiplicative group G and additive group N?

Are there any regular embeddings θ : $G \rightarrow Hol(N)$?

Equivalently

- Does a Galois extension with group *G* admit a Hopf-Galois structure of type *N*?
- Does there exist a left skew brace with multiplicative group G and additive group N?

Specifically, we consider the following conjecture:

Conjecture 1

There is no regular embedding θ : $G \to Hol(N)$ with G insoluble and N soluble.

 If θ : G → Hol(N) is a regular embedding with G nonabelian simple, then N ≅ G (NB, 2004).

- If θ : G → Hol(N) is a regular embedding with G nonabelian simple, then N ≅ G (NB, 2004).
- If θ : G → Hol(N) is a regular embedding with N nilpotent then G is soluble (NB, 2015).

- If θ : G → Hol(N) is a regular embedding with G nonabelian simple, then N ≅ G (NB, 2004).
- If θ : G → Hol(N) is a regular embedding with N nilpotent then G is soluble (NB, 2015).
 We want to replace "nilpotent" by "soluble".

- If θ : G → Hol(N) is a regular embedding with G nonabelian simple, then N ≅ G (NB, 2004).
- If θ : G → Hol(N) is a regular embedding with N nilpotent then G is soluble (NB, 2015).
 We want to replace "nilpotent" by "soluble".
- There is no **two-sided** finite skew brace with insoluble multiplicative group and soluble additive group (Nasybullov, 2018).

- If θ : G → Hol(N) is a regular embedding with G nonabelian simple, then N ≅ G (NB, 2004).
- If θ : G → Hol(N) is a regular embedding with N nilpotent then G is soluble (NB, 2015).
 We want to replace "nilpotent" by "soluble".
- There is no **two-sided** finite skew brace with insoluble multiplicative group and soluble additive group (Nasybullov, 2018).
- We can have a regular embedding θ : G → Hol(N) with G soluble and N insoluble.

- If θ : G → Hol(N) is a regular embedding with G nonabelian simple, then N ≅ G (NB, 2004).
- If θ : G → Hol(N) is a regular embedding with N nilpotent then G is soluble (NB, 2015).
 We want to replace "nilpotent" by "soluble".
- There is no **two-sided** finite skew brace with insoluble multiplicative group and soluble additive group (Nasybullov, 2018).
- We can have a regular embedding θ : G → Hol(N) with G soluble and N insoluble.

e.g.
$$G = A_4 \times C_5$$
, $N = A_5 = A_4 C_5$,

$$\theta(\alpha,\beta): \sigma \mapsto \alpha \sigma \beta^{-1}.$$

If there is a regular embedding θ : $G \to Hol(N)$ with G insoluble, N soluble, |G| = |N| = n, then

(a) n is divisible by p^3 for some prime p;

- (a) n is divisible by p^3 for some prime p;
- (b) *n* cannot be of the form $2^r|S|$ when S is one of the following nonabelian simple groups:

- (a) n is divisible by p^3 for some prime p;
- (b) *n* cannot be of the form $2^r|S|$ when S is one of the following nonabelian simple groups:
 - (i) A_5 of order $2^2 \cdot 3 \cdot 5$;

- (a) n is divisible by p^3 for some prime p;
- (b) *n* cannot be of the form $2^r|S|$ when S is one of the following nonabelian simple groups:
 - (i) A_5 of order $2^2 \cdot 3 \cdot 5$;
 - (ii) $PSL_2(17)$ of order $2^4 \cdot 3^2 \cdot 17$;

- (a) n is divisible by p^3 for some prime p;
- (b) *n* cannot be of the form $2^r|S|$ when S is one of the following nonabelian simple groups:

If there is a regular embedding θ : $G \to Hol(N)$ with G insoluble, N soluble, |G| = |N| = n, then

- (a) n is divisible by p^3 for some prime p;
- (b) *n* cannot be of the form $2^r|S|$ when S is one of the following nonabelian simple groups:

(c) n > 2000.

If there is a regular embedding θ : $G \to Hol(N)$ with G insoluble, N soluble, |G| = |N| = n, then

- (a) n is divisible by p^3 for some prime p;
- (b) *n* cannot be of the form $2^r |S|$ when S is one of the following nonabelian simple groups:

(i)
$$A_5$$
 of order $2^2 \cdot 3 \cdot 5$;
(ii) $PSL_2(17)$ of order $2^4 \cdot 3^2 \cdot 17$;
(iii) $Sz(2^{2m+1})$ of order $4^{2m+1}(4^{2m+1}+1)(2^{2m+1}-1)$ (with a mild extra

hypothesis on m).

(c) n > 2000.

Remarks

• (a) uses Feit-Thompson, (b) uses the Classification of Finite Simple Groups (CFSG), and (c) uses a computer search.

If there is a regular embedding θ : $G \to Hol(N)$ with G insoluble, N soluble, |G| = |N| = n, then

- (a) n is divisible by p^3 for some prime p;
- (b) *n* cannot be of the form $2^r |S|$ when S is one of the following nonabelian simple groups:

(i)
$$A_5$$
 of order $2^2 \cdot 3 \cdot 5$;
(ii) $PSL_2(17)$ of order $2^4 \cdot 3^2 \cdot 17$;
(iii) $Sz(2^{2m+1})$ of order $4^{2m+1}(4^{2m+1}+1)(2^{2m+1}-1)$ (

iii) $Sz(2^{2m+1})$ of order $4^{2m+1}(4^{2m+1}+1)(2^{2m+1}-1)$ (with a mild extra hypothesis on m).

(c) n > 2000.

- (a) uses Feit-Thompson, (b) uses the Classification of Finite Simple Groups (CFSG), and (c) uses a computer search.
- The Suzuki groups Sz(2^{2m+1}) are the only nonabelian simple groups whose order is not divisible by 3.

Theorem 2 (NB)

Theorem 2 (NB)

If there is a regular embedding θ : $G \to Hol(N)$ with G insoluble, N soluble, |G| = |N| = n, then

(a) n is divisible by 8 or p^4 for some prime p;

Theorem 2 (NB)

- (a) n is divisible by 8 or p^4 for some prime p;
- (b) *n* is divisible by one of the following numbers:

Theorem 2 (NB)

If there is a regular embedding $\theta:G\to {\rm Hol}(N)$ with G insoluble, N soluble, |G|=|N|=n, then

- (a) n is divisible by 8 or p^4 for some prime p;
- (b) *n* is divisible by one of the following numbers:

(i) $2^3 \cdot 3^3 \cdot 13^4 = 13^3 |PSL_3(3)|;$

Theorem 2 (NB)

If there is a regular embedding θ : $G \to Hol(N)$ with G insoluble, N soluble, |G| = |N| = n, then

(a) n is divisible by 8 or p^4 for some prime p;

(b) *n* is divisible by one of the following numbers:

(i)
$$2^3 \cdot 3^3 \cdot 13^4 = 13^3 |PSL_3(3)|;$$

(ii) $(q-1)q^4(q+1) = q^3 |PSL_2(q-1)|$, where $q = 2^a + 1$ is a Fermat prime, $a \ge 2$ (so $a = 2^c$ for some c), i.e. q = 5, 17, 257, 65537, ???

Theorem 2 (NB)

If there is a regular embedding $\theta : G \to \operatorname{Hol}(N)$ with G insoluble, N soluble, |G| = |N| = n, then (a) n is divisible by 8 or p^4 for some prime p; (b) n is divisible by one of the following numbers: (i) $2^3 \cdot 3^3 \cdot 13^4 = 13^3 |\operatorname{PSL}_3(3)|$; (ii) $(q-1)q^4(q+1) = q^3 |\operatorname{PSL}_2(q-1)|$, where $q = 2^a + 1$ is a Fermat prime, $a \ge 2$ (so $a = 2^c$ for some c), i.e. q = 5, 17, 257, 65537, ??? (iii) $\frac{1}{2}p(p-1)(p+1) = |\operatorname{PSL}_2(p)|$, where $p = 2^b - 1$ is a Mersenne prime, $b \ge 3$ (so b is prime).

Theorem 2 (NB)

If there is a regular embedding $\theta : G \to Hol(N)$ with G insoluble, N soluble, |G| = |N| = n, then (a) n is divisible by 8 or p^4 for some prime p; (b) n is divisible by one of the following numbers: (i) $2^3 \cdot 3^3 \cdot 13^4 = 13^3 |PSL_3(3)|$; (ii) $(q-1)q^4(q+1) = q^3 |PSL_2(q-1)|$, where $q = 2^a + 1$ is a Fermat prime, $a \ge 2$ (so $a = 2^c$ for some c), i.e. q = 5, 17, 257, 65537, ??? (iii) $\frac{1}{2}p(p-1)(p+1) = |PSL_2(p)|$, where $p = 2^b - 1$ is a Mersenne prime,

 $b \geq 3$ (so b is prime).

Moreover, G contains $PSL_3(3)$, resp. $PSL_2(q-1)$, resp. $PSL_2(p)$, as a subquotient.

• (a) marginally improves on Theorem 1(a), but **does not** use Feit-Thompson or CFSG.

- (a) marginally improves on Theorem 1(a), but **does not** use Feit-Thompson or CFSG.
- It might be possible to replace p^4 by p^{p+1} (see later).

- (a) marginally improves on Theorem 1(a), but **does not** use Feit-Thompson or CFSG.
- It might be possible to replace p^4 by p^{p+1} (see later).
- (b) does use CFSG.

- (a) marginally improves on Theorem 1(a), but **does not** use Feit-Thompson or CFSG.
- It might be possible to replace p^4 by p^{p+1} (see later).
- (b) does use CFSG.
- Theorem 2 implies all of Theorem 1 except when n < 2000 is a multiple of |PSL₂(7)| = 168 = 2³ · 3 · 7.

Transitive embeddings

Transitive embeddings

Definition

A transitive embedding is an injective group homomorphism

 $\theta: G \hookrightarrow \operatorname{Hol}(N) = N \rtimes \operatorname{Aut}(N) \subseteq \operatorname{Perm}(N)$

whose image is transitive on N. (View $N \subset Hol(N)$ as left translations.)

Definition

A transitive embedding is an injective group homomorphism

 $\theta: G \hookrightarrow \operatorname{Hol}(N) = N \rtimes \operatorname{Aut}(N) \subseteq \operatorname{Perm}(N)$

whose image is transitive on N. (View $N \subset Hol(N)$ as left translations.)

The stabiliser G_1 of e_N has index |N| in G, and $\bigcap_{g \in G} gG_1 g^{-1} = \{e_G\}$.

Definition

A transitive embedding is an injective group homomorphism

 $\theta: G \hookrightarrow \operatorname{Hol}(N) = N \rtimes \operatorname{Aut}(N) \subseteq \operatorname{Perm}(N)$

whose image is transitive on N. (View $N \subset Hol(N)$ as left translations.)

The stabiliser G_1 of e_N has index |N| in G, and $\bigcap_{g \in G} g G_1 g^{-1} = \{e_G\}$. Also θ is a regular embedding $\Leftrightarrow G_1 = \{e_G\}$.

Definition

A transitive embedding is an injective group homomorphism

 $\theta: G \hookrightarrow \operatorname{Hol}(N) = N \rtimes \operatorname{Aut}(N) \subseteq \operatorname{Perm}(N)$

whose image is transitive on N. (View $N \subset Hol(N)$ as left translations.)

The stabiliser G_1 of e_N has index |N| in G, and $\bigcap_{g \in G} g G_1 g^{-1} = \{e_G\}$. Also θ is a regular embedding $\Leftrightarrow G_1 = \{e_G\}$.

Starting with the groups G and N, giving a transitive embedding $\theta: G \to Hol(N)$ is equivalent to giving two functions

 $\theta_a: G \to \operatorname{Aut}(N), \qquad \theta_c: G \to N, \qquad \text{so that}$

Definition

A transitive embedding is an injective group homomorphism

 $\theta: G \hookrightarrow \operatorname{Hol}(N) = N \rtimes \operatorname{Aut}(N) \subseteq \operatorname{Perm}(N)$

whose image is transitive on N. (View $N \subset Hol(N)$ as left translations.)

The stabiliser G_1 of e_N has index |N| in G, and $\bigcap_{g \in G} g G_1 g^{-1} = \{e_G\}$. Also θ is a regular embedding $\Leftrightarrow G_1 = \{e_G\}$.

Starting with the groups G and N, giving a transitive embedding $\theta: G \to Hol(N)$ is equivalent to giving two functions

 $\theta_a: G \to \operatorname{Aut}(N), \qquad \theta_c: G \to N, \qquad \text{so that}$

 θ_a is a homomorphism of groups (i.e. θ_a gives an action of G on N),

Definition

A transitive embedding is an injective group homomorphism

 $\theta: G \hookrightarrow \operatorname{Hol}(N) = N \rtimes \operatorname{Aut}(N) \subseteq \operatorname{Perm}(N)$

whose image is transitive on N. (View $N \subset Hol(N)$ as left translations.)

The stabiliser G_1 of e_N has index |N| in G, and $\bigcap_{g \in G} g G_1 g^{-1} = \{e_G\}$. Also θ is a regular embedding $\Leftrightarrow G_1 = \{e_G\}$.

Starting with the groups G and N, giving a transitive embedding $\theta: G \to \operatorname{Hol}(N)$ is equivalent to giving two functions

 $\theta_a: G \to \operatorname{Aut}(N), \qquad \theta_c: G \to N, \qquad \text{so that}$

 θ_a is a homomorphism of groups (i.e. θ_a gives an action of G on N), θ_c is a surjective (non-abelian) 1-cocycle for this action:

$$heta_c(gh) = heta_c(g)(g \cdot heta_c(h))$$
 for all $g, h \in G$

where $g \cdot n = \theta_a(g)(n)$ for $g \in G$, $n \in N$.

A G-subgroup of N is a subgroup M such that $\theta_a(g)(m) \in M$ for all $g \in G$, $m \in M$.

A G-subgroup of N is a subgroup M such that $\theta_a(g)(m) \in M$ for all $g \in G$, $m \in M$.

Lemma

Let M be a G-subgroup for the transitive embedding θ : $G \rightarrow Hol(N)$.

A G-subgroup of N is a subgroup M such that $\theta_a(g)(m) \in M$ for all $g \in G$, $m \in M$.

Lemma

Let M be a G-subgroup for the transitive embedding θ : $G \rightarrow Hol(N)$. (i) the subset

$$\begin{aligned} \theta^{-1}M &:= \{g \in G : \theta_c(g) \in M\} \\ &= \{g \in G : g \cdot e_N \in M\}. \end{aligned}$$

is a subgroup of G.

A G-subgroup of N is a subgroup M such that $\theta_a(g)(m) \in M$ for all $g \in G$, $m \in M$.

Lemma

Let M be a G-subgroup for the transitive embedding θ : $G \rightarrow Hol(N)$. (i) the subset

$$\begin{array}{rcl} \theta^{-1}M & := & \{g \in G : \theta_c(g) \in M\} \\ & = & \{g \in G : g \cdot e_N \in M\}. \end{array}$$

is a subgroup of G. (ii) $\theta|_M : \theta^{-1}M \to \operatorname{Hol}(M)$ is a transitive embedding.

A G-subgroup of N is a subgroup M such that $\theta_a(g)(m) \in M$ for all $g \in G$, $m \in M$.

Lemma

Let M be a G-subgroup for the transitive embedding θ : $G \rightarrow Hol(N)$. (i) the subset

$$\begin{array}{rcl} \theta^{-1}M & := & \{g \in G : \theta_c(g) \in M\} \\ & = & \{g \in G : g \cdot e_N \in M\}. \end{array}$$

is a **subgroup** of *G*. (ii) $\theta|_M : \theta^{-1}M \to Hol(M)$ is a transitive embedding. (iii) $\theta|_M$ is regular if and only if θ is regular.

A G-subgroup of N is a subgroup M such that $\theta_a(g)(m) \in M$ for all $g \in G$, $m \in M$.

Lemma

Let M be a G-subgroup for the transitive embedding θ : $G \rightarrow Hol(N)$. (i) the subset

$$\begin{array}{rcl} \theta^{-1}M & := & \{g \in G : \theta_c(g) \in M\} \\ & = & \{g \in G : g \cdot e_N \in M\}. \end{array}$$

is a subgroup of G.

(ii) $\theta|_M : \theta^{-1}M \to \operatorname{Hol}(M)$ is a transitive embedding.

(iii) $\theta|_M$ is regular if and only if θ is regular.

(iv) If also $M \triangleleft N$, then θ induces a transitive embedding $\overline{\theta} : \overline{G} \to \operatorname{Hol}(N/M)$, where $\overline{G} = G / \cap_g g(\theta^{-1}M)g^{-1}$.

• This gives an isomorphism between the lattice of *G*-subgroups of *N* and a certain sublattice of the subgroups of *G*.

- This gives an isomorphism between the lattice of G-subgroups of N and a certain sublattice of the subgroups of G.
- Likewise for normal G-subgroups.

- This gives an isomorphism between the lattice of G-subgroups of N and a certain sublattice of the subgroups of G.
- Likewise for normal G-subgroups.
- If M is an arbitrary subgroup of N (i.e., not a G-subgroup), θ⁻¹M is just a subset of G.

- This gives an isomorphism between the lattice of G-subgroups of N and a certain sublattice of the subgroups of G.
- Likewise for normal G-subgroups.
- If M is an arbitrary subgroup of N (i.e., not a G-subgroup), θ⁻¹M is just a subset of G.
- For a G-subgroup M,

 $M \lhd N \not\Rightarrow \theta^{-1} M \lhd G,$

so

 θ is regular $\Rightarrow \overline{\theta}$ is regular.

- This gives an isomorphism between the lattice of G-subgroups of N and a certain sublattice of the subgroups of G.
- Likewise for normal G-subgroups.
- If M is an arbitrary subgroup of N (i.e., not a G-subgroup), θ⁻¹M is just a subset of G.
- For a G-subgroup M,

 $M \lhd N \not\Rightarrow \theta^{-1} M \lhd G,$

50

 θ is regular $\Rightarrow \overline{\theta}$ is regular.

• Any characteristic subgroup of N is a normal G-subgroup.

- This gives an isomorphism between the lattice of G-subgroups of N and a certain sublattice of the subgroups of G.
- Likewise for normal G-subgroups.
- If M is an arbitrary subgroup of N (i.e., not a G-subgroup), θ⁻¹M is just a subset of G.
- For a G-subgroup M,

$$M \triangleleft N \not\Rightarrow \theta^{-1} M \triangleleft G,$$

50

$$\theta$$
 is regular $\Rightarrow \overline{\theta}$ is regular.

• Any characteristic subgroup of N is a normal G-subgroup.

A new idea for Conjecture 1 ...

- This gives an isomorphism between the lattice of G-subgroups of N and a certain sublattice of the subgroups of G.
- Likewise for normal G-subgroups.
- If M is an arbitrary subgroup of N (i.e., not a G-subgroup), θ⁻¹M is just a subset of G.
- For a G-subgroup M,

$$M \triangleleft N \not\Rightarrow \theta^{-1} M \triangleleft G,$$

so

$$\theta$$
 is regular $\Rightarrow \overline{\theta}$ is regular.

• Any characteristic subgroup of N is a normal G-subgroup.

A new idea for Conjecture 1 ... Group Theorist's Induction.

Theorem

Every finite group [has some property]

Theorem

Every finite group [has some property]

Proof.

Theorem

Every finite group [has some property]

Proof.

Suppose G doesn't.

Theorem

Every finite group [has some property]

Proof.

Suppose G doesn't. Let H be [some proper subgroup of G].

Theorem

Every finite group [has some property]

Proof.

Suppose G doesn't. Let H be [some proper subgroup of G]. Then [...], so H doesn't either.

Theorem

Every finite group [has some property]

Proof.

Suppose G doesn't. Let H be [some proper subgroup of G]. Then [...], so H doesn't either. Contradiction!

Theorem

Every finite group [has some property]

Proof.

Suppose G doesn't. Let H be [some proper subgroup of G]. Then [...], so H doesn't either. Contradiction! QED!

Theorem

Every finite group [has some property]

Proof.

Suppose G doesn't. Let H be [some proper subgroup of G]. Then [...], so H doesn't either. Contradiction! QED!

This works because G is tacitly assumed to be the minimal counterexample . . .

Theorem

Every finite group [has some property]

Proof.

Suppose G doesn't. Let H be [some proper subgroup of G]. Then [...], so H doesn't either. Contradiction! QED!

This works because G is tacitly assumed to be the minimal counterexample . . .

... on some interpretation of "minimal".

Theorem

Every finite group [has some property]

Proof.

Suppose G doesn't. Let H be [some proper subgroup of G]. Then [...], so H doesn't either. Contradiction! QED!

This works because G is tacitly assumed to be the minimal counterexample . . .

... on some interpretation of "minimal".

Let's try to apply this to Conjecture 1.

A bad regular embedding is a regular embedding θ : $G \to Hol(N)$ with G insoluble and N soluble.

A bad regular embedding is a regular embedding θ : $G \rightarrow Hol(N)$ with G insoluble and N soluble.

It is a minimal bad regular embedding if $\theta^{-1}M$ is soluble for every *G*-subgroup $M \subsetneq N$.

A bad regular embedding is a regular embedding θ : $G \rightarrow Hol(N)$ with G insoluble and N soluble.

It is a minimal bad regular embedding if $\theta^{-1}M$ is soluble for every *G*-subgroup $M \subsetneq N$.

So Conjecture 1 says there are no bad regular embeddings.

A bad regular embedding is a regular embedding θ : $G \rightarrow Hol(N)$ with G insoluble and N soluble.

It is a **minimal bad regular embedding** if $\theta^{-1}M$ is soluble for every *G*-subgroup $M \subsetneq N$.

So Conjecture 1 says there are no bad regular embeddings.

Lemma

Let θ : $G \to Hol(N)$ be a bad regular embedding. Then there is a *G*-subgroup *M* of *N* so that

$$\theta|_M: \theta^{-1}M \to \operatorname{Hol}(M)$$

is a minimal bad regular embedding.

A bad regular embedding is a regular embedding θ : $G \rightarrow Hol(N)$ with G insoluble and N soluble.

It is a **minimal bad regular embedding** if $\theta^{-1}M$ is soluble for every *G*-subgroup $M \subsetneq N$.

So Conjecture 1 says there are no bad regular embeddings.

Lemma

Let θ : $G \to Hol(N)$ be a bad regular embedding. Then there is a *G*-subgroup *M* of *N* so that

$$\theta|_M: \theta^{-1}M \to \operatorname{Hol}(M)$$

is a minimal bad regular embedding.

Any composition factor of $\theta^{-1}M$ occurs as a subquotient of G.

Now let θ : $G \rightarrow N$ be a minimal bad regular embedding.

Now let θ : $G \rightarrow N$ be a minimal bad regular embedding.

Let $M \subsetneq N$ be a maximal normal *G*-subgroup of *N*.

Let $M \subsetneq N$ be a maximal normal *G*-subgroup of *N*.

Since N is soluble,

 $N/M \cong C_p^r$ for some prime p and some $r \ge 1$.

Let $M \subsetneq N$ be a maximal normal *G*-subgroup of *N*.

Since N is soluble,

 $N/M \cong C_p^r$ for some prime p and some $r \ge 1$.

So we have a transitive embedding

 $\overline{\theta}:\overline{G}\to\operatorname{Hol}(V)$

where

Let $M \subsetneq N$ be a maximal normal *G*-subgroup of *N*.

Since N is soluble,

 $N/M \cong C_p^r$ for some prime p and some $r \ge 1$.

So we have a transitive embedding

 $\overline{\theta}:\overline{G}\to\operatorname{Hol}(V)$

where

• V is the vector space \mathbb{F}_p^r ;

Let $M \subsetneq N$ be a maximal normal *G*-subgroup of *N*.

Since N is soluble,

 $N/M \cong C_p^r$ for some prime p and some $r \ge 1$.

So we have a transitive embedding

 $\overline{\theta}:\overline{G}\to\operatorname{Hol}(V)$

where

- V is the vector space \mathbb{F}_p^r ;
- $\overline{G} = G / \cap_g g H g^{-1};$

Let $M \subsetneq N$ be a maximal normal *G*-subgroup of *N*.

Since N is soluble,

 $N/M \cong C_p^r$ for some prime p and some $r \ge 1$.

So we have a transitive embedding

 $\overline{\theta}:\overline{G}\to\operatorname{Hol}(V)$

where

• V is the vector space \mathbb{F}_p^r ;

•
$$\overline{G} = G / \cap_g g H g^{-1};$$

• $H = \theta^{-1}M$, a soluble subgroup of G.

Let $M \subsetneq N$ be a maximal normal *G*-subgroup of *N*.

Since N is soluble,

 $N/M \cong C_p^r$ for some prime p and some $r \ge 1$.

So we have a transitive embedding

$$\overline{\theta}:\overline{G}\to\operatorname{Hol}(V)$$

where

- V is the vector space \mathbb{F}_p^r ;
- $\overline{G} = G / \cap_g gHg^{-1};$

• $H = \theta^{-1}M$, a soluble subgroup of G.

Since M is maximal, V has no \overline{G} -subspaces except $\{0_V\}$ and V,

Let $M \subsetneq N$ be a maximal normal *G*-subgroup of *N*.

Since N is soluble,

 $N/M \cong C_p^r$ for some prime p and some $r \ge 1$.

So we have a transitive embedding

$$\overline{\theta}:\overline{G}\to\operatorname{Hol}(V)$$

where

- V is the vector space \mathbb{F}_p^r ;
- $\overline{G} = G / \cap_g gHg^{-1};$

• $H = \theta^{-1}M$, a soluble subgroup of G.

Since *M* is maximal, *V* has no \overline{G} -subspaces except $\{0_V\}$ and *V*, i.e. *V* is an irreducible $\mathbb{F}_p[\overline{G}]$ -module via $\overline{\theta}_a$.

Nigel Byott (University of Exeter)

Definition

A bad transitive vectorial embedding is a transitive embedding $\theta : G \to \operatorname{Hol}(V)$ for some vector space $V = \mathbb{F}_p^r$, with G insoluble, and the stabiliser H of 0_V soluble.

Definition

A bad transitive vectorial embedding is a transitive embedding $\theta : G \to Hol(V)$ for some vector space $V = \mathbb{F}_p^r$, with G insoluble, and the stabiliser H of 0_V soluble.

It is irreducible if V is an irreducible $\mathbb{F}_p[G]$ -module via θ_a .

Definition

A bad transitive vectorial embedding is a transitive embedding $\theta: G \to Hol(V)$ for some vector space $V = \mathbb{F}_p^r$, with G insoluble, and the stabiliser H of 0_V soluble.

It is irreducible if V is an irreducible $\mathbb{F}_p[G]$ -module via θ_a .

Note that *H* is a soluble subgroup of index p^r in the insoluble group *G*, and $\bigcap_g g H g^{-1} = \{e_G\}$.

Definition

A bad transitive vectorial embedding is a transitive embedding $\theta : G \to Hol(V)$ for some vector space $V = \mathbb{F}_p^r$, with G insoluble, and the stabiliser H of 0_V soluble.

It is irreducible if V is an irreducible $\mathbb{F}_p[G]$ -module via θ_a .

Note that *H* is a soluble subgroup of index p^r in the insoluble group *G*, and $\bigcap_g g H g^{-1} = \{e_G\}$.

If θ is irreducible, the projection $G \to \operatorname{Aut}(V) \subset V \rtimes \operatorname{Aut}(V)$ is injective, i.e. θ is translation-free.

Definition

A bad transitive vectorial embedding is a transitive embedding $\theta: G \to Hol(V)$ for some vector space $V = \mathbb{F}_p^r$, with G insoluble, and the stabiliser H of 0_V soluble.

It is irreducible if V is an irreducible $\mathbb{F}_p[G]$ -module via θ_a .

Note that *H* is a soluble subgroup of index p^r in the insoluble group *G*, and $\bigcap_g g H g^{-1} = \{e_G\}$.

If θ is irreducible, the projection $G \to \operatorname{Aut}(V) \subset V \rtimes \operatorname{Aut}(V)$ is injective, i.e. θ is translation-free.

(By contrast, θ is automorphism-free $\Leftrightarrow \theta$ is regular.)

Definition

A bad transitive vectorial embedding is a transitive embedding $\theta: G \to Hol(V)$ for some vector space $V = \mathbb{F}_p^r$, with G insoluble, and the stabiliser H of 0_V soluble.

It is irreducible if V is an irreducible $\mathbb{F}_p[G]$ -module via θ_a .

Note that *H* is a soluble subgroup of index p^r in the insoluble group *G*, and $\bigcap_g g H g^{-1} = \{e_G\}$.

If θ is irreducible, the projection $G \to \operatorname{Aut}(V) \subset V \rtimes \operatorname{Aut}(V)$ is injective, i.e. θ is translation-free.

(By contrast, θ is automorphism-free $\Leftrightarrow \theta$ is regular.)

 $\mathcal{P}(N) = \{ \text{primes } p : N \text{ has a normal subgroup of index } p \}.$

 $\mathcal{P}(N) = \{ \text{primes } p : N \text{ has a normal subgroup of index } p \}.$

Lemma

Let θ : $G \to \operatorname{Hol}(N)$ be a minimal bad regular embedding. For each $p \in \mathcal{P}(N)$ there is a quotient $V \cong \mathbb{F}_p^r$ of N and a quotient \overline{G} of G for which θ induces an irreducible bad transitive vectorial embedding

 $\overline{\theta}:\overline{G}\to\operatorname{Hol}(V).$

 $\mathcal{P}(N) = \{ \text{primes } p : N \text{ has a normal subgroup of index } p \}.$

Lemma

Let θ : $G \to \operatorname{Hol}(N)$ be a minimal bad regular embedding. For each $p \in \mathcal{P}(N)$ there is a quotient $V \cong \mathbb{F}_p^r$ of N and a quotient \overline{G} of G for which θ induces an irreducible bad transitive vectorial embedding

 $\overline{\theta}:\overline{G}\to\operatorname{Hol}(V).$

Moreover, \overline{G} has the same nonabelian composition factors as G (with the same multiplicities).

 $\mathcal{P}(N) = \{ \text{primes } p : N \text{ has a normal subgroup of index } p \}.$

Lemma

Let θ : $G \to \operatorname{Hol}(N)$ be a minimal bad regular embedding. For each $p \in \mathcal{P}(N)$ there is a quotient $V \cong \mathbb{F}_p^r$ of N and a quotient \overline{G} of G for which θ induces an irreducible bad transitive vectorial embedding

 $\overline{\theta}:\overline{G}\to\operatorname{Hol}(V).$

Moreover, \overline{G} has the same nonabelian composition factors as G (with the same multiplicities).

Potential strategy to prove Conjecture 1:

 $\mathcal{P}(N) = \{ \text{primes } p : N \text{ has a normal subgroup of index } p \}.$

Lemma

Let θ : $G \to \operatorname{Hol}(N)$ be a minimal bad regular embedding. For each $p \in \mathcal{P}(N)$ there is a quotient $V \cong \mathbb{F}_p^r$ of N and a quotient \overline{G} of G for which θ induces an irreducible bad transitive vectorial embedding

 $\overline{\theta}:\overline{G}\to\operatorname{Hol}(V).$

Moreover, \overline{G} has the same nonabelian composition factors as G (with the same multiplicities).

Potential strategy to prove Conjecture 1:

Show there are no irreducible bad transitive vectorial embeddings.

Nigel Byott (University of Exeter)

Example

Let $G = PSL_2(7) = GL_3(2)$, the simple group of order 168, and $V = \mathbb{F}_2^3$.

Example

Let $G = PSL_2(7) = GL_3(2)$, the simple group of order 168, and $V = \mathbb{F}_2^3$.

Write elements of Hol(V) as block matrices in $GL_4(2)$.

Example

Let $G = PSL_2(7) = GL_3(2)$, the simple group of order 168, and $V = \mathbb{F}_2^3$.

Write elements of Hol(V) as block matrices in $GL_4(2)$. Let

$$A = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ \hline 0 & 0 & 0 & 1 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 0 & 1 \end{pmatrix}$$

Example

Let $G = PSL_2(7) = GL_3(2)$, the simple group of order 168, and $V = \mathbb{F}_2^3$.

Write elements of Hol(V) as block matrices in $GL_4(2)$. Let

$$A = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ \hline 0 & 0 & 0 & 1 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & 0 & 0 & | \ 1 \\ 0 & 1 & 1 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 0 & | \ 1 \end{pmatrix}$$

Then $A^4 = B^2 = I \neq A^2$ and $BAB^{-1} = A^3$ so $\langle A, B \rangle$ is the image of a regular embedding $D_4 \rightarrow Hol(V)$.

Example

Let $G = PSL_2(7) = GL_3(2)$, the simple group of order 168, and $V = \mathbb{F}_2^3$.

Write elements of Hol(V) as block matrices in $GL_4(2)$. Let

$$A = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ \hline 0 & 0 & 0 & 1 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & 0 & 0 & | \ 1 \\ 0 & 1 & 1 & 0 \\ \hline 0 & 0 & 1 & 0 \\ \hline 0 & 0 & 0 & | \ 1 \end{pmatrix}$$

Then $A^4 = B^2 = I \neq A^2$ and $BAB^{-1} = A^3$ so $\langle A, B \rangle$ is the image of a regular embedding $D_4 \rightarrow Hol(V)$.

It is translation-free but not irreduclble.

$$R = \begin{pmatrix} 0 & 0 & 1 & | & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 0 & | & 1 \end{pmatrix}, \qquad S = \begin{pmatrix} 1 & 0 & 0 & | & 0 \\ 0 & 0 & 1 & | & 0 \\ \hline 0 & 0 & 1 & 1 & 0 \\ \hline 0 & 0 & 0 & | & 1 \end{pmatrix}$$

$$R = \begin{pmatrix} 0 & 0 & 1 & | & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 0 & | & 1 \end{pmatrix}, \qquad S = \begin{pmatrix} 1 & 0 & 0 & | & 0 \\ 0 & 0 & 1 & | & 0 \\ \hline 0 & 0 & 0 & | & 1 \end{pmatrix}$$

Then $R^7 = S^3 = I$, $SR = R^2S$, so $\langle R, S \rangle$ is a group of order 21.

$$R = \begin{pmatrix} 0 & 0 & 1 & | & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 0 & | & 1 \end{pmatrix}, \qquad S = \begin{pmatrix} 1 & 0 & 0 & | & 0 \\ 0 & 0 & 1 & | & 0 \\ \hline 0 & 0 & 0 & | & 1 \end{pmatrix}$$

Then $R^7 = S^3 = I$, $SR = R^2S$, so $\langle R, S \rangle$ is a group of order 21.

 $AR = R^3 A^2 B$, $AS = S^2 A^2 B$, $BR = RA^3 B$, $BS = S^2 B$.

$$R = \begin{pmatrix} 0 & 0 & 1 & | & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 0 & | & 1 \end{pmatrix}, \qquad S = \begin{pmatrix} 1 & 0 & 0 & | & 0 \\ 0 & 0 & 1 & | & 0 \\ \hline 0 & 1 & 1 & 0 \\ \hline 0 & 0 & 0 & | & 1 \end{pmatrix}$$

Then $R^7 = S^3 = I$, $SR = R^2S$, so $\langle R, S \rangle$ is a group of order 21.

 $AR = R^3 A^2 B$, $AS = S^2 A^2 B$, $BR = RA^3 B$, $BS = S^2 B$.

So

$$\langle A, B, R, S \rangle \cong \mathrm{GL}_3(2)$$

giving us an irreducible bad transitive vectorial embedding.

$$R = \begin{pmatrix} 0 & 0 & 1 & | & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 0 & | & 1 \end{pmatrix}, \qquad S = \begin{pmatrix} 1 & 0 & 0 & | & 0 \\ 0 & 0 & 1 & | & 0 \\ \hline 0 & 1 & 1 & 0 \\ \hline 0 & 0 & 0 & | & 1 \end{pmatrix}$$

Then $R^7 = S^3 = I$, $SR = R^2S$, so $\langle R, S \rangle$ is a group of order 21.

 $AR = R^3 A^2 B$, $AS = S^2 A^2 B$, $BR = RA^3 B$, $BS = S^2 B$.

So

$$\langle A, B, R, S \rangle \cong \mathrm{GL}_3(2)$$

giving us an irreducible bad transitive vectorial embedding.

To get some information on minimal bad regular embeddings, we investigate two aspects of translation-free bad transitive vectorial embeddings:

$$R = \begin{pmatrix} 0 & 0 & 1 & | & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 0 & | & 1 \end{pmatrix}, \qquad S = \begin{pmatrix} 1 & 0 & 0 & | & 0 \\ 0 & 0 & 1 & | & 0 \\ \hline 0 & 1 & 1 & 0 \\ \hline 0 & 0 & 0 & | & 1 \end{pmatrix}$$

Then $R^7 = S^3 = I$, $SR = R^2S$, so $\langle R, S \rangle$ is a group of order 21.

 $AR = R^3 A^2 B$, $AS = S^2 A^2 B$, $BR = RA^3 B$, $BS = S^2 B$.

So

$$\langle A, B, R, S \rangle \cong \mathrm{GL}_3(2)$$

giving us an irreducible bad transitive vectorial embedding.

To get some information on minimal bad regular embeddings, we investigate two aspects of translation-free bad transitive vectorial embeddings: Sylow *p*-subgroups,

Nigel Byott (University of Exeter)

Insoluble Galois extensions

$$R = \begin{pmatrix} 0 & 0 & 1 & | & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 0 & | & 1 \end{pmatrix}, \qquad S = \begin{pmatrix} 1 & 0 & 0 & | & 0 \\ 0 & 0 & 1 & | & 0 \\ \hline 0 & 1 & 1 & 0 \\ \hline 0 & 0 & 0 & | & 1 \end{pmatrix}$$

Then $R^7 = S^3 = I$, $SR = R^2S$, so $\langle R, S \rangle$ is a group of order 21.

 $AR = R^3 A^2 B$, $AS = S^2 A^2 B$, $BR = RA^3 B$, $BS = S^2 B$.

So

$$\langle A, B, R, S \rangle \cong \mathrm{GL}_3(2)$$

giving us an irreducible bad transitive vectorial embedding.

To get some information on minimal bad regular embeddings, we investigate two aspects of translation-free bad transitive vectorial embeddings: Sylow *p*-subgroups, and composition factors.

Nigel Byott (University of Exeter)

Insoluble Galois extensions

Let $\theta: G \to \operatorname{Hol}(\mathbb{F}_p^r)$ be a translation-free bad transitive vectorial embedding.

Let $\theta : G \to \operatorname{Hol}(\mathbb{F}_p^r)$ be a translation-free bad transitive vectorial embedding.

Write $V = \mathbb{F}_{p}^{r}$, let H be the stabiliser of 0_{V} , and let P be a Sylow *p*-subgroup of G.

Let $\theta : G \to \operatorname{Hol}(\mathbb{F}_p^r)$ be a translation-free bad transitive vectorial embedding.

Write $V = \mathbb{F}_{p}^{r}$, let H be the stabiliser of 0_{V} , and let P be a Sylow *p*-subgroup of G.

Then G = PH and P is transitive on V. (In general $P \cap H \neq \{0_V\}$.)

Let $\theta : G \to \operatorname{Hol}(\mathbb{F}_p^r)$ be a translation-free bad transitive vectorial embedding.

Write $V = \mathbb{F}_{p}^{r}$, let H be the stabiliser of 0_{V} , and let P be a Sylow *p*-subgroup of G.

Then G = PH and P is transitive on V. (In general $P \cap H \neq \{0_V\}$.)

So θ restricts to a translation-free transitive embedding $P \to Hol(V)$. (It is no longer "bad" since P is soluble, and θ cannot be irreducible.)

Sylow *p*-subgroups

Let $\theta : G \to \operatorname{Hol}(\mathbb{F}_p^r)$ be a translation-free bad transitive vectorial embedding.

Write $V = \mathbb{F}_{p}^{r}$, let H be the stabiliser of 0_{V} , and let P be a Sylow *p*-subgroup of G.

Then G = PH and P is transitive on V. (In general $P \cap H \neq \{0_V\}$.)

So θ restricts to a translation-free transitive embedding $P \to Hol(V)$. (It is no longer "bad" since P is soluble, and θ cannot be irreducible.)

In particular, |P| is divisible by p^r and we have an injection $P \hookrightarrow \operatorname{Aut}(V) = \operatorname{GL}_r(p)$.

Sylow *p*-subgroups

Let $\theta : G \to \operatorname{Hol}(\mathbb{F}_p^r)$ be a translation-free bad transitive vectorial embedding.

Write $V = \mathbb{F}_{p}^{r}$, let H be the stabiliser of 0_{V} , and let P be a Sylow *p*-subgroup of G.

Then G = PH and P is transitive on V. (In general $P \cap H \neq \{0_V\}$.)

So θ restricts to a translation-free transitive embedding $P \to Hol(V)$. (It is no longer "bad" since P is soluble, and θ cannot be irreducible.)

In particular, |P| is divisible by p^r and we have an injection $P \hookrightarrow \operatorname{Aut}(V) = \operatorname{GL}_r(p)$.

This is impossible if r = 1 or 2 since then p^r does not divide $|GL_r(p)|$.

$$\left\{ \left(\begin{array}{rrr} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{array} \right) \right\}.$$

$$\left\{ \left(\begin{array}{rrr} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{array} \right) \right\}.$$

So, if we had a translation-free transitive embedding $P \to \operatorname{Hol}(\mathbb{F}_p^3)$, it would be regular and WLOG its image would be generated by the matrices

$$\left\{ \left(\begin{array}{rrr} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{array} \right) \right\}.$$

So, if we had a translation-free transitive embedding $P \to \operatorname{Hol}(\mathbb{F}_p^3)$, it would be regular and WLOG its image would be generated by the matrices

$$A = \begin{pmatrix} 1 & 0 & 1 & u_1 \\ 0 & 1 & 0 & u_2 \\ 0 & 0 & 1 & u_3 \\ \hline 0 & 0 & 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 & 0 & v_1 \\ 0 & 1 & 1 & v_2 \\ 0 & 0 & 1 & v_3 \\ \hline 0 & 0 & 0 & 1 \end{pmatrix}, C = \begin{pmatrix} 1 & 1 & 0 & w_1 \\ 0 & 1 & 0 & w_2 \\ 0 & 0 & 1 & w_3 \\ \hline 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\left\{ \left(\begin{array}{rrr} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{array} \right) \right\}.$$

So, if we had a translation-free transitive embedding $P \to \operatorname{Hol}(\mathbb{F}_p^3)$, it would be regular and WLOG its image would be generated by the matrices

$$A = \begin{pmatrix} 1 & 0 & 1 & | & u_1 \\ 0 & 1 & 0 & | & u_2 \\ 0 & 0 & 1 & | & u_3 \\ \hline 0 & 0 & 0 & | & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 & 0 & | & v_1 \\ 0 & 1 & 1 & | & v_2 \\ 0 & 0 & 1 & | & v_3 \\ \hline 0 & 0 & 0 & | & 1 \end{pmatrix}, C = \begin{pmatrix} 1 & 1 & 0 & | & w_1 \\ 0 & 1 & 0 & | & w_2 \\ \hline 0 & 0 & 1 & | & w_3 \\ \hline 0 & 0 & 0 & | & 1 \end{pmatrix}$$

satisfying the relations BA = AB, CA = AC, CB = ABC.

$$\left\{ \left(\begin{array}{rrr} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{array} \right) \right\}.$$

So, if we had a translation-free transitive embedding $P \to \operatorname{Hol}(\mathbb{F}_p^3)$, it would be regular and WLOG its image would be generated by the matrices

$$A = \begin{pmatrix} 1 & 0 & 1 & | & u_1 \\ 0 & 1 & 0 & | & u_2 \\ 0 & 0 & 1 & | & u_3 \\ \hline 0 & 0 & 0 & | & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 & 0 & | & v_1 \\ 0 & 1 & 1 & | & v_2 \\ 0 & 0 & 1 & | & v_3 \\ \hline 0 & 0 & 0 & | & 1 \end{pmatrix}, C = \begin{pmatrix} 1 & 1 & 0 & | & w_1 \\ 0 & 1 & 0 & | & w_2 \\ \hline 0 & 0 & 1 & | & w_3 \\ \hline 0 & 0 & 0 & | & 1 \end{pmatrix}$$

satisfying the relations BA = AB, CA = AC, CB = ABC. These imply $u_3 = v_3 = 0$, $2w_3 = 0$.

$$\left\{ \left(\begin{array}{rrr} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{array} \right) \right\}.$$

So, if we had a translation-free transitive embedding $P \to \operatorname{Hol}(\mathbb{F}_p^3)$, it would be regular and WLOG its image would be generated by the matrices

$$A = \begin{pmatrix} 1 & 0 & 1 & | & u_1 \\ 0 & 1 & 0 & | & u_2 \\ 0 & 0 & 1 & | & u_3 \\ \hline 0 & 0 & 0 & | & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 & 0 & | & v_1 \\ 0 & 1 & 1 & | & v_2 \\ 0 & 0 & 1 & | & v_3 \\ \hline 0 & 0 & 0 & | & 1 \end{pmatrix}, C = \begin{pmatrix} 1 & 1 & 0 & | & w_1 \\ 0 & 1 & 0 & | & w_2 \\ \hline 0 & 0 & 1 & | & w_3 \\ \hline 0 & 0 & 0 & | & 1 \end{pmatrix}$$

satisfying the relations BA = AB, CA = AC, CB = ABC. These imply $u_3 = v_3 = 0$, $2w_3 = 0$. So if $p \ge 3$, we have $u_3 = v_3 = w_3 = 0$ and the P cannot be transitive.

We conclude

Lemma

If we there is a translation-free bad transitive vectorial embedding $G \to \operatorname{Hol}(\mathbb{F}_p^r)$ then either $r \ge 4$ or p = 2, r = 3.

The previous Example shows the case p = 2, r = 3 can occur with $G = PSL_2(7)$.

Corollary

 If θ : G → Hol(N) is a minimal bad regular embedding and p ∈ P(N) then |G| is divisible by

$$\begin{cases} p^4 & \text{if } p \ge 3; \\ 2^3 & \text{if } p = 2. \end{cases}$$

 If θ : G → Hol(N) is any bad regular embedding, then |G| is divisible by either p⁴ for a prime p ≥ 3, or by 8.

So we have proved Theorem 2(a) without using Feit-Thompson or CFSG.

Remark

If we had a translation-free transitive embedding

$$P \to \operatorname{Hol}(\mathbb{F}_p^r)$$

with P a p-group and $r \le p$, then P would have exponent p and nilpotency class < p. For p = 2 and p = 3, we have shown that no such embedding exists. Is the same true for all p? If so, we could replace p^4 by p^{p+1} in the previous Corollary.

Suppose we have a bad transitive embedding $\theta : G \to \operatorname{Hol}(\mathbb{F}_p^r)$, with G insoluble and $H = \theta^{-1}\{0_v\}$ soluble of index p^r .

Suppose we have a bad transitive embedding $\theta : G \to \operatorname{Hol}(\mathbb{F}_p^r)$, with G insoluble and $H = \theta^{-1}\{0_v\}$ soluble of index p^r .

To obtain from this a "bad" action of a normal subgroup or quotient of G, we allow our groups to act just as permutions on a set, rather than via the holomorph of a vector space.

Suppose we have a bad transitive embedding $\theta : G \to \operatorname{Hol}(\mathbb{F}_p^r)$, with G insoluble and $H = \theta^{-1}\{0_v\}$ soluble of index p^r .

To obtain from this a "bad" action of a normal subgroup or quotient of G, we allow our groups to act just as permutions on a set, rather than via the holomorph of a vector space.

Definition 3

A bad transitive permutation action is in injective group homomorphism $\theta: G \hookrightarrow Perm(X)$, where G acts transitively on X, G is insoluble, the stabiliser H of an element of X is soluble, and $|X| = p^r$ for some prime p and some $r \ge 1$.

Suppose we have a bad transitive embedding $\theta : G \to \operatorname{Hol}(\mathbb{F}_p^r)$, with G insoluble and $H = \theta^{-1}\{0_v\}$ soluble of index p^r .

To obtain from this a "bad" action of a normal subgroup or quotient of G, we allow our groups to act just as permutions on a set, rather than via the holomorph of a vector space.

Definition 3

A bad transitive permutation action is in injective group homomorphism $\theta: G \hookrightarrow Perm(X)$, where G acts transitively on X, G is insoluble, the stabiliser H of an element of X is soluble, and $|X| = p^r$ for some prime p and some $r \ge 1$.

Then H is a soluble subgroup of index p^r in the insoluble group G, and $\bigcap_g g H g^{-1} = \{e_G\}.$

We try to find its nonabelian composition factors (ignoring the cyclic composition factors).

We try to find its nonabelian composition factors (ignoring the cyclic composition factors).

If $J \lhd G$ then the orbits of J on X are permuted transitively by G/J.

We try to find its nonabelian composition factors (ignoring the cyclic composition factors).

If $J \lhd G$ then the orbits of J on X are permuted transitively by G/J.

So both J and G/J have permutation actions on sets of p-power size. These have soluble point stabilisers, and become injective after dividing out a soluble subgroup. Thus either J or G/J (or both) gives a bad transitive permutation action.

We try to find its nonabelian composition factors (ignoring the cyclic composition factors).

If $J \lhd G$ then the orbits of J on X are permuted transitively by G/J.

So both J and G/J have permutation actions on sets of p-power size. These have soluble point stabilisers, and become injective after dividing out a soluble subgroup. Thus either J or G/J (or both) gives a bad transitive permutation action.

Repeating, we can break down a bad transitive vectorial embedding of characteristic p into a sequence of bad transitive permutation actions of nonabelian **simple** groups acting on sets of p-power size. This preserves all the nonabelian composition factors of G.

If a nonabelian simple group G has a bad transitive permutation action $G \to \operatorname{Perm}(X)$ with $|X| = p^r$, then G has a soluble subgroup of index p^r .

If a nonabelian simple group G has a bad transitive permutation action $G \to \operatorname{Perm}(X)$ with $|X| = p^r$, then G has a soluble subgroup of index p^r .

Now we use a consequence of CFSG:

If a nonabelian simple group G has a bad transitive permutation action $G \to \operatorname{Perm}(X)$ with $|X| = p^r$, then G has a soluble subgroup of index p^r .

Now we use a consequence of CFSG:

Theorem (Guralnick, 1983)

If G is a nonabelian simple group G with a proper subgroup of prime-power index p^r , then one of the following holds.

(a)
$$G = A_n$$
, $H = A_{n-1}$ with $n = p^r$;

(b) $G = PSL_n(q)$, $p^r = (q^n - 1)/(q - 1)$ and H is the stabiliser of a point or a hyperplane in G;

(c)
$$G = PSL_2(11)$$
 and $H = A_5$ of index 11;

(d)
$$G = M_{23}$$
, $H = M_{22}$ or $G = M_{11}$, $H = M_{!0}$;

(e) $G = PSU_4(2) \cong PSp_4(3)$ and H has index 27.

Corollary

If G is a nonabelian finite simple group with a **soluble** subgroup H of prime-power index, then one of the following holds.

- (a) $G = PSL_2(7) \cong PSL_3(2)$, the simple group of order 168, and H has index 7 or 8;
- (b) $G = PSL_3(3)$ and H has index 13;
- (c) $G = PSL_2(2^a)$ where $2^a + 1 = p$ is a Fermat prime, and H has index p;
- (d) $G = PSL_2(q)$ where $q = 2^a 1$ is a Mersenne prime with q > 7, and H has index $q + 1 = 2^a$.

Corollary

If G is a nonabelian finite simple group with a **soluble** subgroup H of prime-power index, then one of the following holds.

- (a) $G = PSL_2(7) \cong PSL_3(2)$, the simple group of order 168, and H has index 7 or 8;
- (b) $G = PSL_3(3)$ and H has index 13;
- (c) $G = PSL_2(2^a)$ where $2^a + 1 = p$ is a Fermat prime, and H has index p;
- (d) $G = PSL_2(q)$ where $q = 2^a 1$ is a Mersenne prime with q > 7, and H has index $q + 1 = 2^a$.

Case (c) includes the case $PSL_2(4) \cong A_5$ with a subgroup of index 5. (This group is also isomorphic to $PSL_2(5)$.)

Corollary

If G is a nonabelian finite simple group with a **soluble** subgroup H of prime-power index, then one of the following holds.

- (a) $G = PSL_2(7) \cong PSL_3(2)$, the simple group of order 168, and H has index 7 or 8;
- (b) $G = PSL_3(3)$ and H has index 13;
- (c) $G = PSL_2(2^a)$ where $2^a + 1 = p$ is a Fermat prime, and H has index p;
- (d) $G = PSL_2(q)$ where $q = 2^a 1$ is a Mersenne prime with q > 7, and H has index $q + 1 = 2^a$.

Case (c) includes the case $PSL_2(4) \cong A_5$ with a subgroup of index 5. (This group is also isomorphic to $PSL_2(5)$.)

We then deduce ...

- Let $\theta: G \to \operatorname{Hol}(V)$ be a bad transitive vectorial embedding, with $V = \mathbb{F}_p^r$. Then one of the following holds.
- (a) p = 7 and every nonabelian composition factor of G is isomorphic to PSL₂(7) of order 168;
- (b) p = 13 and every nonabelian composition factor of G is isomorphic to PSL₃(3);
- (c) $p = 2^a + 1$ is a Fermat prime and every nonabelian composition factor of G is isomorphic to $PSL_2(2^a)$;
- (d) p = 2 and every nonabelian composition factor of G is of the form $PSL_2(q)$ for a Mersenne prime $q = 2^a 1 \ge 7$.

- Let $\theta: G \to \operatorname{Hol}(V)$ be a bad transitive vectorial embedding, with $V = \mathbb{F}_p^r$. Then one of the following holds.
- (a) p = 7 and every nonabelian composition factor of G is isomorphic to PSL₂(7) of order 168;
- (b) p = 13 and every nonabelian composition factor of G is isomorphic to PSL₃(3);
- (c) $p = 2^a + 1$ is a Fermat prime and every nonabelian composition factor of G is isomorphic to $PSL_2(2^a)$;
- (d) p = 2 and every nonabelian composition factor of G is of the form $PSL_2(q)$ for a Mersenne prime $q = 2^a 1 \ge 7$.

Combining this with the Sylow *p*-subgroup result, we get ...

Let θ : $G \to Hol(N)$ be a minimal regular embedding. Then one of the following holds.

- (a) P(N) = {7} or {2,7} and every nonabelian composition factor of G is isomorphic to PSL₃(2) ≅ PSL₂(7);
- (b) \$\mathcal{P}(N) = {13}\$, every nonabelian composition factor of \$G\$ is isomorphic to \$PSL_3(3)\$, and \$13^4\$ divides \$|G|\$;
- (c) \$\mathcal{P}(N) = {q}\$ for some Fermat prime \$q = 2^a + 1\$, every nonabelian composition factor of \$G\$ is isomorphic to \$PSL_2(2^a)\$, and \$q^4\$ divides \$|G|\$;
- (d) $\mathcal{P}(N) = \{2\}$ and each nonabelian composition factor of G has the form $\mathrm{PSL}_2(q)$ for some Mersenne prime $q = 2^a 1 \ge 7$.

Let θ : $G \to Hol(N)$ be a minimal regular embedding. Then one of the following holds.

- (a) $\mathcal{P}(N) = \{7\}$ or $\{2,7\}$ and every nonabelian composition factor of G is isomorphic to $\mathrm{PSL}_3(2) \cong \mathrm{PSL}_2(7)$;
- (b) \$\mathcal{P}(N) = {13}\$, every nonabelian composition factor of \$G\$ is isomorphic to \$PSL_3(3)\$, and \$13^4\$ divides \$|G|\$;
- (c) \$\mathcal{P}(N) = {q}\$ for some Fermat prime \$q = 2^a + 1\$, every nonabelian composition factor of \$G\$ is isomorphic to \$PSL_2(2^a)\$, and \$q^4\$ divides \$|G|\$;
- (d) $\mathcal{P}(N) = \{2\}$ and each nonabelian composition factor of G has the form $\mathrm{PSL}_2(q)$ for some Mersenne prime $q = 2^a 1 \ge 7$.

Theorem 2(b) follows.

Thank you for listening!